可视化|历届奥运会数据可视化
家电修理 2023-07-16 19:16www.caominkang.com电器维修
文章目录
- 1 数据来源
- 2 数据可视化
- 2.1 数量可视化
- 1. 男性运动员年龄分布直方图
- 2. 女性运动员年龄分布直方图
- 3. 全体运动员年龄分布直方图
- 4. 男性运动员身高体重分布散点图
- 5. 女性运动员身高体重分布散点图
- 6. 全体运动员身高体重分布散点图
- 2.2 地理可视化
- 1. 历届奥运会各国运动员分布轮播地图
- 2. 历届夏奥会各国运动员分布轮播地图
- 3. 历届冬奥会各国运动员分布轮播地图
- 4. 历届夏奥会主办城市地图
- 5. 历届冬奥会主办城市地图
- 6. 历届夏奥会主办城市轨迹地图
- 7. 历届冬奥会主办城市轨迹地图
- 8. 历届夏奥会主办城市轨迹3D地图
- 9. 历届冬奥会主办城市轨迹3D地图
- 10. 历届夏奥会获奖国家分布时间线地图
- 11. 历届冬奥会获奖国家分布时间线地图
- 12. 历届夏奥会参赛国家分布时间线地图
- 13. 历届冬奥会参赛国家分布时间线地图
- 2.3 趋势可视化
- 1. 男性|女性|全体历届奥运会中国参赛人数折线图
- 2. 男性|女性|全体历届奥运会中国参赛人数柱状折线图
- 3. 历届夏奥会参赛国家数量时间线折线图
- 4. 历届冬奥会参赛国家数量时间线折线图
- 5. 历届夏奥会获奖国家数量时间线折线图
- 6. 历届冬奥会获奖国家数量时间线折线图
- 7. 历届夏奥会或冬奥会参赛|获奖国家数量时间线折线图
- 2.4 比例可视化
- 1. 历届夏奥会参赛国家获奖比例堆叠柱状折线图
- 2. 历届冬奥会参赛国家获奖比例堆叠柱状折线图
Kaggle奥运会数据集,包括从1896年雅典奥运会到2016年里约热内卢的所有奥运赛事和运动员数据,可用于历届奥运会数据可视化。
2 数据可视化 2.1 数量可视化 1. 男性运动员年龄分布直方图链接https://.kaggle./heesoo37/120-years-of-olympic-history-athletes-and-results
#[可视化]男性运动员年龄分布 import pandas as pd from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.mons.utils import JsCode # 将数据存储到列表中 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") df=athlete_df.groupby(['Sex','Age'])['ID'].count().reset_index() m_age=df[df['Sex']=='M']['Age'].values.tolist() m_age_num=df[df['Sex']=='M']['ID'].values.tolist() c = ( Bar() .add_xaxis(m_age) .add_yaxis("", m_age_num, category_gap=0) .set_series_opts( itemstyle_opts={ "normal": { "color": JsCode( """ne echarts.graphic.LinearGradient(0, 0, 0, 1, [{ offset: 0, color: 'rgba(0, 244, 255, 1)' }, { offset: 1, color: 'rgba(0, 77, 167, 1)' }], false)""" ), "shadoColor": "rgb(0, 160, 221)", } }, label_opts=opts.LabelOpts(is_sho=False), markline_opts=opts.MarkLineOpts() ) .set_global_opts( title_opts=opts.TitleOpts(title="男性运动员年龄分布",pos_left='center'), yaxis_opts=opts.AxisOpts(name='数量/个'), xaxis_opts=opts.AxisOpts(name='年龄/岁') ) .render("./Visual/[直方图]男性运动员年龄分布.html") )2. 女性运动员年龄分布直方图
#[可视化]女性运动员年龄分布 from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.mons.utils import JsCode from pyecharts.faker import Faker # 将数据存储到列表中 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") df=athlete_df.groupby(['Sex','Age'])['ID'].count().reset_index() _age=df[df['Sex']=='F']['Age'].values.tolist() _age_num=df[df['Sex']=='F']['ID'].values.tolist() c = ( Bar() .add_xaxis(_age) .add_yaxis("", _age_num, category_gap=0) .set_series_opts( itemstyle_opts={ "normal": { "color": JsCode( """ne echarts.graphic.LinearGradient(0, 0, 0, 1, [{ offset: 0, color: 'rgba(0, 244, 255, 1)' }, { offset: 1, color: 'rgba(0, 77, 167, 1)' }], false)""" ), "shadoColor": "rgb(0, 160, 221)", } }, label_opts=opts.LabelOpts(is_sho=False), markline_opts=opts.MarkLineOpts() ) .set_global_opts( title_opts=opts.TitleOpts(title="女性运动员年龄分布",pos_left='center'), yaxis_opts=opts.AxisOpts(name='数量/个'), xaxis_opts=opts.AxisOpts(name='年龄/岁') ) .render("./Visual/[直方图]女性运动员年龄分布.html") )3. 全体运动员年龄分布直方图
#[可视化]全体运动员年龄分布 from pyecharts import options as opts from pyecharts.charts import Bar from pyecharts.mons.utils import JsCode from pyecharts.faker import Faker # 将数据存储到列表中 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") df=athlete_df.groupby(['Age'])['ID'].count().reset_index() age=df['Age'].values.tolist() age_num=df['ID'].values.tolist() c = ( Bar() .add_xaxis(age) .add_yaxis("", age_num, category_gap=0) .set_series_opts( itemstyle_opts={ "normal": { "color": JsCode( """ne echarts.graphic.LinearGradient(0, 0, 0, 1, [{ offset: 0, color: 'rgba(0, 244, 255, 1)' }, { offset: 1, color: 'rgba(0, 77, 167, 1)' }], false)""" ), "shadoColor": "rgb(0, 160, 221)", } }, label_opts=opts.LabelOpts(is_sho=False), markline_opts=opts.MarkLineOpts() ) .set_global_opts( title_opts=opts.TitleOpts(title="运动员年龄分布",pos_left='center'), yaxis_opts=opts.AxisOpts(name='数量/个'), xaxis_opts=opts.AxisOpts(name='年龄/岁') ) .render("./Visual/[直方图]运动员年龄分布.html") )4. 男性运动员身高体重分布散点图
#[可视化]男性运动员身高体重 import pandas as pd from pyecharts import options as opts from pyecharts.charts import Scatter # 将数据存储到列表中 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") athlete_df=athlete_df[athlete_df['Sex']=='M'] df=athlete_df[['Height','Weight']].drop_duplicates().dropna() df=df.sort_values(by=['Weight']) height=df['Height'].values.tolist() eight=df['Weight'].values.tolist() c = ( Scatter() .add_xaxis(eight) .add_yaxis("", height,symbol_size=7) .set_series_opts( label_opts=opts.LabelOpts(is_sho=False) ) .set_global_opts( title_opts=opts.TitleOpts(title="男性运动员身高体重分布",pos_left='center'), xaxis_opts=opts.AxisOpts(min_=35,max_=60,name='Weight'), yaxis_opts=opts.AxisOpts(max_=220,min_=100,name='Height') ) .render("./Visual/[散点图]男性运动员身高体重.html") )5. 女性运动员身高体重分布散点图
#[可视化]女性运动员身高体重 import pandas as pd from pyecharts import options as opts from pyecharts.charts import Scatter # 将数据存储到列表中 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") athlete_df=athlete_df[athlete_df['Sex']=='F'] df=athlete_df[['Height','Weight']].drop_duplicates().dropna() df=df.sort_values(by=['Weight']) height=df['Height'].values.tolist() eight=df['Weight'].values.tolist() c = ( Scatter() .add_xaxis(eight) .add_yaxis("", height,symbol_size=7) .set_series_opts( label_opts=opts.LabelOpts(is_sho=False) ) .set_global_opts( title_opts=opts.TitleOpts(title="女性运动员身高体重分布",pos_left='center'), xaxis_opts=opts.AxisOpts(max_=50, min_=30, name='Weight'), yaxis_opts=opts.AxisOpts(max_=220,min_=100,name='Height') ) .render("./Visual/[散点图]女性运动员身高体重.html") )6. 全体运动员身高体重分布散点图
#[可视化]全体运动员身高体重 import pandas as pd from pyecharts import options as opts from pyecharts.charts import Scatter # 将数据存储到列表中 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") df=athlete_df[['Height','Weight']].drop_duplicates().dropna() df=df.sort_values(by=['Weight']) height=df['Height'].values.tolist() eight=df['Weight'].values.tolist() c = ( Scatter() .add_xaxis(eight) .add_yaxis("", height,symbol_size=7) .set_series_opts( label_opts=opts.LabelOpts(is_sho=False) ) .set_global_opts( title_opts=opts.TitleOpts(title="全体运动员身高体重分布",pos_left='center'), xaxis_opts=opts.AxisOpts(max_=80, min_=28, name='Weight'), yaxis_opts=opts.AxisOpts(max_=220,min_=100,name='Height') ) .render("./Visual/[散点图]全体运动员身高体重.html") )2.2 地理可视化 1. 历届奥运会各国运动员分布轮播地图
利用Pandas将历届运动员数据按照年份和国家聚类
以1896年为例,筛选1896年的各国家参赛运动员数据
利用Pandas统计奥运会举办年份数量
利用Timeline和Map图表进行可视化
#[可视化]历届奥运会各国运动员分布自动轮播地图 from pyecharts import options as opts from pyecharts.charts import Map,Timeline # 统计年份数量 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") data=athlete_df.groupby(by=['Year','Team'])['ID'].count().reset_index() count=len(athlete_df['Year'].unique()) years=athlete_df['Year'].sort_values().unique().tolist() timeline =( Timeline() .add_schema( is_auto_play=True, is_loop_play=True, is_timeline_sho=True, play_interval=500 ) ) for i in range(count): year=years[i] data_list=data[data['Year']==year][['Team','ID']].values.tolist() map=( Map() .add("", data_list, "orld", is_map_symbol_sho=False, ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title="历届奥运会各国运动员分布图————{}年".format(years[i])), visualmap_opts=opts.VisualMapOpts(max_=500,range_color=['#feeeed','#d71345']) ) ) timeline.add(map,'{}'.format(years[i])) timeline.render("./Visual/[时间线地图]各国运动员分布图.html")
利用Pandas筛选季节为Summer的数据
#[可视化]历届夏奥会各国运动员分布自动轮播地图 from pyecharts import options as opts from pyecharts.charts import Map,Timeline # 统计年份数量 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") athlete_df=athlete_df[athlete_df['Season']=='Summer'] data=athlete_df.groupby(by=['Year','Team'])['ID'].count().reset_index() count=len(athlete_df['Year'].unique()) years=athlete_df['Year'].sort_values().unique().tolist() timeline =( Timeline() .add_schema( is_auto_play=True, is_loop_play=True, is_timeline_sho=True, play_interval=500, checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#ef4136',border_color='#ffce7b') ) ) for i in range(count): year=years[i] data_list=data[data['Year']==year][['Team','ID']].values.tolist() map=( Map() .add("", data_list, "orld", is_map_symbol_sho=False, ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title="历届夏奥会各国运动员分布图————{}年".format(years[i])), visualmap_opts=opts.VisualMapOpts(max_=500,range_color=['#ffce7b','#ef4136']) ) ) timeline.add(map,'{}'.format(years[i])) timeline.render("./Visual/[时间线地图]夏奥会各国运动员分布图.html")
#[可视化]历届冬奥会各国运动员分布自动轮播地图 from pyecharts import options as opts from pyecharts.charts import Map,Timeline import pandas as pd # 统计年份数量 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") athlete_df=athlete_df[athlete_df['Season']=='Winter'] data=athlete_df.groupby(by=['Year','Team'])['ID'].count().reset_index() count=len(athlete_df['Year'].unique()) years=athlete_df['Year'].sort_values().unique().tolist() timeline =( Timeline() .add_schema( is_auto_play=True, is_loop_play=True, is_timeline_sho=True, play_interval=500, checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#6950a1',border_color='#9b95c9') ) ) for i in range(count): year=years[i] data_list=data[data['Year']==year][['Team','ID']].values.tolist() map=( Map() .add("", data_list, "orld", is_map_symbol_sho=False, ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title="历届冬奥会各国运动员分布图————{}年".format(years[i])), visualmap_opts=opts.VisualMapOpts(max_=500,range_color=['#afb4db','#6f599c']) ) ) timeline.add(map,'{}'.format(years[i])) timeline.render("./Visual/[时间线地图]冬奥会各国运动员分布图.html")
利用Pandas获取历届夏奥会主办城市
收集各个主办城市的经纬度
将城市经纬度数据转换为json格式并写入文件
#[可视化]历届夏奥会主办城市地图 from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.globals import ChartType, SymbolType athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") athlete_df=athlete_df[athlete_df['Season']=='Summer'] city_df=athlete_df[['Year','City']].drop_duplicates().sort_values(by=['Year']) # 获取城市 cities=city_df[['City','Year']].values.tolist() locs=[] for city in cities: locs.append(tuple(city)) # print(locs) c = ( Geo() .add_schema( maptype="orld", # itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"), ) .add_coordinate_json("./DataSet/Location/Summer_City.json") .add( "", locs, type_=ChartType.EFFECT_SCATTER, color="red", ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title='历届夏奥会主办城市地图',pos_left='center') ) .render("./Visual/[地理坐标图]历届夏奥会主办城市地图.html") )5. 历届冬奥会主办城市地图
#[可视化]历届冬奥会主办城市地图 from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.globals import ChartType, SymbolType athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") athlete_df=athlete_df[athlete_df['Season']=='Winter'] city_df=athlete_df[['Year','City']].drop_duplicates().sort_values(by=['Year']) # 获取城市 cities=city_df[['City','Year']].values.tolist() locs=[] for city in cities: locs.append(tuple(city)) # print(locs) c = ( Geo() .add_schema( maptype="orld", # itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"), ) .add_coordinate_json("./DataSet/Location/Winter_City.json") .add( "", locs, type_=ChartType.EFFECT_SCATTER, color="#4e72b8", ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title='历届冬奥会主办城市地图',pos_left='center') ) .render("./Visual/[地理坐标图]历届冬奥会主办城市地图.html") )6. 历届夏奥会主办城市轨迹地图
#[可视化]历届夏奥会主办城市轨迹地图 from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.globals import ChartType, SymbolType athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") athlete_df=athlete_df[athlete_df['Season']=='Summer'] city_df=athlete_df[['Year','City']].drop_duplicates().sort_values(by=['Year']) # 获取城市 cities=city_df[['City','Year']].values.tolist() locs=[] for city in cities: locs.append(tuple(city)) # print(locs) # 获取轨迹 city_list=list(city_df['City']) lines=[] for i in range(len(city_list)-1): lines.append(tuple([city_list[i],city_list[i+1]])) # print(lines) c = ( Geo() .add_schema( maptype="orld", itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"), ) .add_coordinate_json("./DataSet/Location/Summer_City.json") .add( "", locs, type_=ChartType.EFFECT_SCATTER, color="hite", ) .add( "", lines, type_=ChartType.LINES, effect_opts=opts.EffectOpts( symbol=SymbolType.ARROW, symbol_size=6, color="blue" ), linestyle_opts=opts.LineStyleOpts(curve=0.2), ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title='历届夏奥会主办城市轨迹地图',pos_left='center') ) .render("./Visual/[地理坐标图]历届夏奥会主办城市轨迹地图.html") )7. 历届冬奥会主办城市轨迹地图
#[可视化]历届冬奥会主办城市轨迹地图 from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.globals import ChartType, SymbolType athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") athlete_df=athlete_df[athlete_df['Season']=='Winter'] city_df=athlete_df[['Year','City']].drop_duplicates().sort_values(by=['Year']) # 获取城市 cities=city_df[['City','Year']].values.tolist() locs=[] for city in cities: locs.append(tuple(city)) # print(locs) # 获取轨迹 city_list=list(city_df['City']) lines=[] for i in range(len(city_list)-1): lines.append(tuple([city_list[i],city_list[i+1]])) # print(lines) c = ( Geo() .add_schema( maptype="orld", itemstyle_opts=opts.ItemStyleOpts(color="#323c48", border_color="#111"), ) .add_coordinate_json("./DataSet/Location/Winter_City.json") .add( "", locs, type_=ChartType.EFFECT_SCATTER, color="hite", ) .add( "", lines, type_=ChartType.LINES, effect_opts=opts.EffectOpts( symbol=SymbolType.ARROW, symbol_size=6, color="yello" ), linestyle_opts=opts.LineStyleOpts(curve=0.2), ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title='历届冬奥会主办城市轨迹地图',pos_left='center') ) .render("./Visual/[地理坐标图]历届冬奥会主办城市轨迹地图.html") )8. 历届夏奥会主办城市轨迹3D地图
#[可视化]历届夏奥会主办城市轨迹3D地图 from pyecharts import options as opts from pyecharts.charts import Map3D from pyecharts.globals import ChartType import pandas as pd summer_city=pd.read_csv("./DataSet/Location/Summer_City.csv",header=None) cities_location=summer_city[[1,2]].values.tolist() data=[] for i in range(len(cities_location)-1): data.append([cities_location[i],cities_location[i+1]]) c = ( Map3D(init_opts=opts.InitOpts(idth='1000px',height='700px')) .add_schema( maptype="orld", box_depth=70, itemstyle_opts=opts.ItemStyleOpts( color="rgb(5,101,123)", opacity=1, border_idth=0.8, border_color="rgb(62,215,213)", ), light_opts=opts.Map3DLightOpts( main_color="#fff", main_intensity=1.2, is_main_shado=False, main_alpha=55, main_beta=10, ambient_intensity=0.3, ), post_effect_opts=opts.Map3DPostEffectOpts(is_enable=True), ) .add( series_name="", data_pair=data, type_=ChartType.LINES3D, effect=opts.Lines3DEffectOpts( is_sho=True, period=4, trail_idth=3, trail_length=0.5, trail_color="#f00", trail_opacity=1, ), linestyle_opts=opts.LineStyleOpts(is_sho=False, color="#fff", opacity=0), ) .set_global_opts(title_opts=opts.TitleOpts(title="历届夏奥会主办城市轨迹3D地图")) .render("./Visual/[地理坐标图]历届夏奥会主办城市轨迹3D地图.html") )9. 历届冬奥会主办城市轨迹3D地图
#[可视化]历届冬奥会主办城市轨迹3D地图 from pyecharts import options as opts from pyecharts.charts import Map3D from pyecharts.globals import ChartType import pandas as pd inter_city=pd.read_csv("./DataSet/Location/Winter_city.csv",header=None) cities_location=inter_city[[1,2]].values.tolist() data=[] for i in range(len(cities_location)-1): data.append([cities_location[i],cities_location[i+1]]) c = ( Map3D(init_opts=opts.InitOpts(idth='1000px',height='700px')) .add_schema( maptype="orld", box_depth=70, itemstyle_opts=opts.ItemStyleOpts( color="rgb(5,101,123)", opacity=1, border_idth=0.8, border_color="rgb(62,215,213)", ), light_opts=opts.Map3DLightOpts( main_color="#fff", main_intensity=1.2, is_main_shado=False, main_alpha=55, main_beta=10, ambient_intensity=0.3, ), post_effect_opts=opts.Map3DPostEffectOpts(is_enable=True), ) .add( series_name="", data_pair=data, type_=ChartType.LINES3D, effect=opts.Lines3DEffectOpts( is_sho=True, period=4, trail_idth=3, trail_length=0.5, trail_color="#f00", trail_opacity=1, ), linestyle_opts=opts.LineStyleOpts(is_sho=False, color="#fff", opacity=0), ) .set_global_opts(title_opts=opts.TitleOpts(title="历届冬奥会主办城市轨迹3D地图")) .render("./Visual/[地理坐标图]历届冬奥会主办城市轨迹3D地图.html") )10. 历届夏奥会获奖国家分布时间线地图
#[可视化]历届夏奥会获奖国家分布自动轮播地图 from pyecharts import options as opts from pyecharts.charts import Map,Timeline # 统计年份数量 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index() count_df['value']=1 count=len(count_df['Year'].unique()) years=count_df['Year'].sort_values().unique().tolist() timeline =( Timeline() .add_schema( is_auto_play=True, is_loop_play=True, is_timeline_sho=True, play_interval=500, checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#6950a1',border_color='#9b95c9') ) ) for i in range(count): year=years[i] data_list=count_df.loc[(count_df['Year']==year)&(count_df['Medal']!=0),['Team','value']].values.tolist() map=( Map() .add("", data_list, "orld", is_map_symbol_sho=False, ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title="历届夏奥会获奖国家分布图————{}年".format(years[i])), visualmap_opts=opts.VisualMapOpts(is_sho=False,range_color=['#9b95c9','#6f599c']) ) ) timeline.add(map,'{}'.format(years[i])) timeline.render("./Visual/[时间线地图]历届夏奥会获奖国家分布图.html")11. 历届冬奥会获奖国家分布时间线地图
#[可视化]历届冬奥会获奖国家分布自动轮播地图 from pyecharts import options as opts from pyecharts.charts import Map,Timeline # 统计年份数量 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index() count_df['value']=1 count=len(count_df['Year'].unique()) years=count_df['Year'].sort_values().unique().tolist() timeline =( Timeline() .add_schema( is_auto_play=True, is_loop_play=True, is_timeline_sho=True, play_interval=500, checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#4e72b8',border_color='#90d7ec') ) ) for i in range(count): year=years[i] data_list=count_df.loc[(count_df['Year']==year)&(count_df['Medal']!=0),['Team','value']].values.tolist() map=( Map() .add("", data_list, "orld", is_map_symbol_sho=False, ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title="历届冬奥会获奖国家分布图————{}年".format(years[i])), visualmap_opts=opts.VisualMapOpts(is_sho=False) ) ) timeline.add(map,'{}'.format(years[i])) timeline.render("./Visual/[时间线地图]历届冬奥会获奖国家分布图.html")12. 历届夏奥会参赛国家分布时间线地图
#[可视化]历届夏奥会参赛国家分布自动轮播地图 from pyecharts import options as opts from pyecharts.charts import Map,Timeline # 统计年份数量 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index() count_df['value']=1 count=len(count_df['Year'].unique()) years=count_df['Year'].sort_values().unique().tolist() timeline =( Timeline() .add_schema( is_auto_play=True, is_loop_play=True, is_timeline_sho=True, play_interval=500, checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#fcaf17',border_color='#ffce7b') ) ) for i in range(count): year=years[i] data_list=count_df.loc[count_df['Year']==year,['Team','value']].values.tolist() map=( Map() .add("", data_list, "orld", is_map_symbol_sho=False, ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title="历届夏奥会参赛国家分布图————{}年".format(years[i])), visualmap_opts=opts.VisualMapOpts(is_sho=False,range_color=['#fdb933','#6f599c']) ) ) timeline.add(map,'{}'.format(years[i])) timeline.render("./Visual/[时间线地图]历届夏奥会参赛国家分布图.html")13. 历届冬奥会参赛国家分布时间线地图
#[可视化]历届冬奥会参赛国家分布自动轮播地图 from pyecharts import options as opts from pyecharts.charts import Map,Timeline # 统计年份数量 athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index() count_df['value']=1 count=len(count_df['Year'].unique()) years=count_df['Year'].sort_values().unique().tolist() timeline =( Timeline() .add_schema( is_auto_play=True, is_loop_play=True, is_timeline_sho=True, play_interval=500, checkpointstyle_opts=opts.TimelineCheckPointerStyle(color='#00ae9d',border_color='#afdfe4') ) ) for i in range(count): year=years[i] data_list=count_df.loc[count_df['Year']==year,['Team','value']].values.tolist() map=( Map() .add("", data_list, "orld", is_map_symbol_sho=False, ) .set_series_opts(label_opts=opts.LabelOpts(is_sho=False)) .set_global_opts( title_opts=opts.TitleOpts(title="历届冬奥会参赛国家分布图————{}年".format(years[i])), visualmap_opts=opts.VisualMapOpts(is_sho=False,range_color=['#00ae9d','#6f599c']) ) ) timeline.add(map,'{}'.format(years[i])) timeline.render("./Visual/[时间线地图]历届冬奥会参赛国家分布图.html")2.3 趋势可视化 1. 男性|女性|全体历届奥运会中国参赛人数折线图
利用Pandas得到中国历届奥运会男性|女性|全体参赛人数
观察发现,在1932年和1952年没有女性运动员,对数据进行补充
#[可视化]男性|女性|全体历届奥运会中国参赛人数折线图 import pandas as pd from pyecharts.charts import Line,Timeline import pyecharts.options as opts from pyecharts.globals import ThemeType,JsCode athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") china_df=athlete_df[athlete_df['Team']=='China'] # 全体 all_df=china_df.groupby(by=['Year'])['ID'].count().reset_index() all=china_df.groupby(by=['Year'])['ID'].count().reset_index().values.tolist() # 男性 male_df=china_df[china_df['Sex']=='M'] male=male_df.groupby(by=['Year'])['ID'].count().reset_index().values.tolist() # 女性 female_df=china_df[china_df['Sex']=='F'] female=female_df.groupby(by=['Year'])['ID'].count().reset_index() # 在1932年和1952年没有女性运动员 lost=pd.Dataframe({'Year':[1932,1952],'ID':[0,0]}) female=female.append(lost,ignore_index=True).sort_values(by=['Year']).values.tolist() # 背景色 background_color_js = ( "ne echarts.graphic.LinearGradient(0, 0, 0, 1, " "[{offset: 0, color: '#c86589'}, {offset: 1, color: '#06a7ff'}], false)" ) # 线条样式 linestyle_dic = { 'normal': { 'idth': 4, 'shadoColor': '#696969', 'shadoBlur': 10, 'shadoOffsetY': 10, 'shadoOffsetX': 10, } } timeline = Timeline(init_opts=opts.InitOpts(idth='980px',height='600px')) timeline.add_schema(is_auto_play=True, is_loop_play=True, is_timeline_sho=True, play_interval=500) ALL, MALE, FEMALE = [], [], [] x_data=all_df['Year'].values.tolist() x=[] for i in x_data: x.append(str(i)) print(x) for i in range(len(x)): ALL.append(all[i][1]) # print(ALL) MALE.append(male[i][1]) # print(MALE) FEMALE.append(female[i][1]) # print(FEMALE) line = ( Line(init_opts=opts.InitOpts( idth='980px',height='600px')) .add_xaxis(x) # 全体线条 .add_yaxis( '全体', ALL, symbol_size=10, is_smooth=True, label_opts=opts.LabelOpts(is_sho=True), markpoint_opts=opts.MarkPointOpts( data=[ opts.MarkPointItem( name="", type_='max', value_index=0, symbol_size=[40, 25], )], label_opts=opts.LabelOpts(is_sho=False), ) ) # 男性线条 .add_yaxis( '男性', MALE, symbol_size=5, is_smooth=True, label_opts=opts.LabelOpts(is_sho=True), markpoint_opts=opts.MarkPointOpts( data=[ opts.MarkPointItem( name="", type_='max', value_index=0, symbol_size=[40, 25], ) ], label_opts=opts.LabelOpts(is_sho=False), ) ) # 女性线条 .add_yaxis( '女性', FEMALE, symbol_size=5, is_smooth=True, label_opts=opts.LabelOpts(is_sho=True), markpoint_opts=opts.MarkPointOpts( data=[opts.MarkPointItem( name="", type_='max', value_index=0, symbol_size=[40, 25], )], label_opts=opts.LabelOpts(is_sho=False), ) ) .set_series_opts(linestyle_opts=linestyle_dic) .set_global_opts( title_opts=opts.TitleOpts( title='男性|女性|全体历届奥运会中国参赛人数折线图', pos_left='center', pos_='2%', title_textstyle_opts=opts.TextStyleOpts( color='#DC143C', font_size=20) ), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14, color='red'), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2, color='#DB7093'))), yaxis_opts=opts.AxisOpts( name='数量/人', is_scale=True, max_=750, name_textstyle_opts=opts.TextStyleOpts(font_size=16,font_eight='bold',color='#DC143C'), axislabel_opts=opts.LabelOpts(font_size=13), splitline_opts=opts.SplitLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(type_='dashed')), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2, color='#DB7093')) ), legend_opts=opts.LegendOpts(is_sho=True, pos_right='1%', pos_='2%', legend_icon='roundRect',orient = 'vertical'), )) timeline.add(line, '{}'.format(x[i])) timeline.render("./Visual/[时间线折线图]男性-女性-全体历届奥运会中国参赛人数折线图.html")2. 男性|女性|全体历届奥运会中国参赛人数柱状折线图
#[可视化]男性|女性|全体历届奥运会中国参赛人数柱状折线图 import pandas as pd from pyecharts.charts import Bar import pyecharts.options as opts from pyecharts.globals import ThemeType,JsCode athlete_df=pd.read_csv("./DataSet/History/athlete_events.csv") china_df=athlete_df[athlete_df['Team']=='China'] # 全体 all_df=china_df.groupby(by=['Year'])['ID'].count().reset_index() all=china_df.groupby(by=['Year'])['ID'].count().reset_index()['ID'].values.tolist() # 男性 male_df=china_df[china_df['Sex']=='M'] male=male_df.groupby(by=['Year'])['ID'].count().reset_index()['ID'].values.tolist() # 女性 female_df=china_df[china_df['Sex']=='F'] female=female_df.groupby(by=['Year'])['ID'].count().reset_index() # 在1932年和1952年没有女性运动员 lost=pd.Dataframe({'Year':[1932,1952],'ID':[0,0]}) female=female.append(lost,ignore_index=True).sort_values(by=['Year'])['ID'].values.tolist() # x轴数据 x_data=all_df['Year'].values.tolist() x=[] for i in x_data: x.append(str(i)) bar=( Bar() .add_xaxis(x) .add_yaxis("男性", male, gap="0%") .add_yaxis("女性", female, gap="0%") .extend_axis( yaxis=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value}"), interval=100, name='总人数/人' ) ) .set_series_opts( label_opts=opts.LabelOpts(is_sho=False) ) .set_global_opts( title_opts=opts.TitleOpts(title="男性|女性|全体历届奥运会中国参赛人数柱状折线图"), yaxis_opts=opts.AxisOpts(max_=800,name='人数/人',axislabel_opts=opts.LabelOpts(formatter="{value}")), legend_opts=opts.LegendOpts(pos_left='right'), datazoom_opts=opts.DataZoomOpts() ) ) line = Line().add_xaxis(x).add_yaxis("全体", all, yaxis_index=1) bar.overlap(line) bar.render("./Visual/[柱状折线图]男性-女性-全体历届奥运会中国参赛人数柱状折线图.html")3. 历届夏奥会参赛国家数量时间线折线图
利用Pandas从CSV中获取各国家在各年份的奖牌数量
#[可视化]历届夏奥会参赛国家数量趋势 from pyecharts import options as opts from pyecharts.charts import Line,Timeline from pyecharts.globals import ThemeType,JsCode # 统计各国家在各年份的奖牌数量 athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv") summer_count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index() # 获取历届夏奥会参赛国家数量 engage_data=[] years=summer_count_df['Year'].drop_duplicates() for year in years: engage_data.append([year,summer_count_df.loc[summer_count_df['Year']==year].shape[0]]) # 线条样式 linestyle_dic = {'normal': { 'idth': 4, 'shadoColor': '#696969', 'shadoBlur': 10, 'shadoOffsetY': 10, 'shadoOffsetX': 10, } } timeline = Timeline().add_schema(is_auto_play=True, is_loop_play=False,is_timeline_sho=True, play_interval=500) data = [] x_data = [] for year in years: x_data.append(str(year)) for i in range(len(x_data)): data.append(engage_data[i][-1]) line = ( Line() .add_xaxis(x_data) .add_yaxis( '', data, symbol_size=10, is_smooth=True, label_opts=opts.LabelOpts(is_sho=True), markpoint_opts=opts.MarkPointOpts( data=[opts.MarkPointItem( name="", type_='max', value_index=0, symbol_size=[40, 25], )], label_opts=opts.LabelOpts(is_sho=False), ) ) .set_series_opts(linestyle_opts=linestyle_dic, label_opts=opts.LabelOpts(font_size=12)) .set_global_opts( title_opts=opts.TitleOpts( title='历届夏奥会参赛国家数量趋势', title_textstyle_opts=opts.TextStyleOpts(font_size=20)), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2))), yaxis_opts=opts.AxisOpts( is_scale=True, name_textstyle_opts=opts.TextStyleOpts( font_size=16, font_eight='bold'), axislabel_opts=opts.LabelOpts( font_size=13), splitline_opts=opts.SplitLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(type_='dashed')), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2)) ), legend_opts=opts.LegendOpts(is_sho=True, pos_right='1%', pos_='2%',legend_icon='roundRect'), ) ) timeline.add(line, '{}'.format(engage_data[i][0])) timeline.render("./Visual/[时间线折线图]历届夏奥会参赛国家数量趋势.html")4. 历届冬奥会参赛国家数量时间线折线图
#[可视化]历届冬奥会参赛国家数量趋势 from pyecharts import options as opts from pyecharts.charts import Line,Timeline from pyecharts.globals import ThemeType,JsCode # 统计各国家在各年份的奖牌数量 athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv") inter_count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index() # 获取历届冬奥会参赛国家数量 engage_data=[] years=inter_count_df['Year'].drop_duplicates() for year in years: engage_data.append([year,inter_count_df.loc[inter_count_df['Year']==year].shape[0]]) # 线条样式 linestyle_dic = {'normal': { 'idth': 4, 'shadoColor': '#696969', 'shadoBlur': 10, 'shadoOffsetY': 10, 'shadoOffsetX': 10, } } timeline = Timeline().add_schema(is_auto_play=True, is_loop_play=False,is_timeline_sho=True, play_interval=500) data = [] x_data = [] for year in years: x_data.append(str(year)) for i in range(len(x_data)): data.append(engage_data[i][-1]) line = ( Line() .add_xaxis(x_data) .add_yaxis( '', data, symbol_size=10, is_smooth=True, label_opts=opts.LabelOpts(is_sho=True), markpoint_opts=opts.MarkPointOpts( data=[opts.MarkPointItem( name="", type_='max', value_index=0, symbol_size=[40, 25], )], label_opts=opts.LabelOpts(is_sho=False), ) ) .set_series_opts(linestyle_opts=linestyle_dic, label_opts=opts.LabelOpts(font_size=12)) .set_global_opts( title_opts=opts.TitleOpts( title='历届冬奥会参赛国家数量趋势', title_textstyle_opts=opts.TextStyleOpts(font_size=20)), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2))), yaxis_opts=opts.AxisOpts( is_scale=True, name_textstyle_opts=opts.TextStyleOpts( font_size=16, font_eight='bold'), axislabel_opts=opts.LabelOpts( font_size=13), splitline_opts=opts.SplitLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(type_='dashed')), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2)) ), legend_opts=opts.LegendOpts(is_sho=True, pos_right='1%', pos_='2%',legend_icon='roundRect'), ) ) timeline.add(line, '{}'.format(engage_data[i][0])) timeline.render("./Visual/[时间线折线图]历届冬奥会参赛国家数量趋势.html")5. 历届夏奥会获奖国家数量时间线折线图
#[可视化]历届夏奥会获奖国家数量趋势 from pyecharts import options as opts from pyecharts.charts import Line,Timeline from pyecharts.globals import ThemeType,JsCode # 统计各国家在各年份的奖牌数量 athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv") summer_count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index() # 获取历届夏奥会获奖国家数量 medals_data=[] years=summer_count_df['Year'].drop_duplicates() for year in years: medals_data.append([year,summer_count_df.loc[(summer_count_df['Year']==year)&(summer_count_df['Medal']!=0)].shape[0]]) # 线条样式 linestyle_dic = {'normal': { 'idth': 4, 'color':'#6950a1', 'shadoColor': '#696969', 'shadoBlur': 10, 'shadoOffsetY': 10, 'shadoOffsetX': 10, } } timeline = Timeline().add_schema(is_auto_play=True, is_loop_play=False,is_timeline_sho=True, play_interval=500) data = [] x_data = [] for year in years: x_data.append(str(year)) for i in range(len(x_data)): data.append(medals_data[i][-1]) line = ( Line() .add_xaxis(x_data) .add_yaxis( '', data, symbol_size=10, is_smooth=True, label_opts=opts.LabelOpts(is_sho=True), markpoint_opts=opts.MarkPointOpts( data=[opts.MarkPointItem( name="", type_='max', value_index=0, symbol_size=[40, 25], itemstyle_opts=opts.ItemStyleOpts(color='#6950a1') )], label_opts=opts.LabelOpts(is_sho=False), ), color='#6950a1' ) .set_series_opts(linestyle_opts=linestyle_dic, label_opts=opts.LabelOpts(font_size=12,color='#6950a1')) .set_global_opts( title_opts=opts.TitleOpts( title='历届夏奥会获奖国家数量趋势', title_textstyle_opts=opts.TextStyleOpts(font_size=20)), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2))), yaxis_opts=opts.AxisOpts( is_scale=True, name_textstyle_opts=opts.TextStyleOpts( font_size=16, font_eight='bold'), axislabel_opts=opts.LabelOpts( font_size=13), splitline_opts=opts.SplitLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(type_='dashed')), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2)) ), legend_opts=opts.LegendOpts(is_sho=True, pos_right='1%', pos_='2%',legend_icon='roundRect'), ) ) timeline.add(line, '{}'.format(engage_data[i][0])) timeline.render("./Visual/[时间线折线图]历届夏奥会获奖国家数量趋势.html")6. 历届冬奥会获奖国家数量时间线折线图
#[可视化]历届冬奥会获奖国家数量趋势 from pyecharts import options as opts from pyecharts.charts import Line,Timeline from pyecharts.globals import ThemeType,JsCode # 统计各国家在各年份的奖牌数量 athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv") inter_count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index() # 获取历届冬奥会获奖国家数量 medals_data=[] years=inter_count_df['Year'].drop_duplicates() for year in years: medals_data.append([year,inter_count_df.loc[(inter_count_df['Year']==year)&(inter_count_df['Medal']!=0)].shape[0]]) # 线条样式 linestyle_dic = {'normal': { 'idth': 4, 'color':'#6950a1', 'shadoColor': '#696969', 'shadoBlur': 10, 'shadoOffsetY': 10, 'shadoOffsetX': 10, } } timeline = Timeline().add_schema(is_auto_play=True, is_loop_play=False,is_timeline_sho=True, play_interval=500) data = [] x_data = [] for year in years: x_data.append(str(year)) for i in range(len(x_data)): data.append(medals_data[i][-1]) line = ( Line() .add_xaxis(x_data) .add_yaxis( '', data, symbol_size=10, is_smooth=True, label_opts=opts.LabelOpts(is_sho=True), markpoint_opts=opts.MarkPointOpts( data=[opts.MarkPointItem( name="", type_='max', value_index=0, symbol_size=[40, 25], itemstyle_opts=opts.ItemStyleOpts(color='#6950a1') )], label_opts=opts.LabelOpts(is_sho=False), ), color='#6950a1' ) .set_series_opts(linestyle_opts=linestyle_dic, label_opts=opts.LabelOpts(font_size=12,color='#6950a1')) .set_global_opts( title_opts=opts.TitleOpts( title='历届冬奥会获奖国家数量趋势', title_textstyle_opts=opts.TextStyleOpts(font_size=20)), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2))), yaxis_opts=opts.AxisOpts( is_scale=True, name_textstyle_opts=opts.TextStyleOpts( font_size=16, font_eight='bold'), axislabel_opts=opts.LabelOpts( font_size=13), splitline_opts=opts.SplitLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(type_='dashed')), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2)) ), legend_opts=opts.LegendOpts(is_sho=True, pos_right='1%', pos_='2%',legend_icon='roundRect'), ) ) timeline.add(line, '{}'.format(engage_data[i][0])) timeline.render("./Visual/[时间线折线图]历届冬奥会获奖国家数量趋势.html")7. 历届夏奥会或冬奥会参赛|获奖国家数量时间线折线图
将上述图表组合起来,得到下列图表
#[可视化]历届夏奥会获奖|未获奖国家比例 from pyecharts import options as opts from pyecharts.charts import Bar, Line from pyecharts.globals import ThemeType # 统计各国家在各年份的奖牌数量 athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv") summer_count_df=athletes_df[athletes_df['Season']=='Summer'].groupby(['Year','Team'])['Medal'].count().reset_index() # 获取历届夏奥会参赛国家数量 others_data=[] medals_data=[] years=summer_count_df['Year'].drop_duplicates() for year in years: others_data.append(summer_count_df.loc[(summer_count_df['Year']==year)&(summer_count_df['Medal']==0)].shape[0]) medals_data.append(summer_count_df.loc[(summer_count_df['Year']==year)&(summer_count_df['Medal']!=0)].shape[0]) # 折线图数据 line_data=[] for i in range(len(medals_data)): line_data.append(round(medals_data[i]/(medals_data[i]+others_data[i]),2)) x_data = [] for year in years: x_data.append(str(year)) bar = ( Bar(init_opts=opts.InitOpts(theme='light')) .add_xaxis(x_data) .add_yaxis("获奖",medals_data,stack=1,z_level=2) .add_yaxis("未获奖",others_data,stack=1) .extend_axis( yaxis=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value}"), max_=1 ) ) .set_series_opts(label_opts=opts.LabelOpts(font_size=12)) .set_global_opts( title_opts=opts.TitleOpts( title='历届夏奥会获奖|未获奖国家分布', title_textstyle_opts=opts.TextStyleOpts(font_size=20)), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14), axisline_opts=opts.AxisLineOpts(is_sho=True,linestyle_opts=opts.LineStyleOpts(idth=2))), yaxis_opts=opts.AxisOpts( is_scale=True, name_textstyle_opts=opts.TextStyleOpts( font_size=16, font_eight='bold'), axislabel_opts=opts.LabelOpts( font_size=13), splitline_opts=opts.SplitLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(type_='dashed')), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2)) ), legend_opts=opts.LegendOpts(is_sho=True, pos_right='1%', pos_='2%'), datazoom_opts=opts.DataZoomOpts() ) ) line = Line().add_xaxis(x_data).add_yaxis("占比", line_data, yaxis_index=1,z_level=100) bar.overlap(line) bar.render("./Visual/[堆叠柱状折线图]历届夏奥会获奖-未获奖国家比例.html")2. 历届冬奥会参赛国家获奖比例堆叠柱状折线图
#[可视化]历届夏奥会获奖|未获奖国家比例 from pyecharts import options as opts from pyecharts.charts import Bar, Line from pyecharts.globals import ThemeType # 统计各国家在各年份的奖牌数量 athletes_df=pd.read_csv("./DataSet/History/athlete_events.csv") count_df=athletes_df[athletes_df['Season']=='Winter'].groupby(['Year','Team'])['Medal'].count().reset_index() # 获取历届夏奥会参赛国家数量 others_data=[] medals_data=[] years=count_df['Year'].drop_duplicates() for year in years: others_data.append(count_df.loc[(count_df['Year']==year)&(count_df['Medal']==0)].shape[0]) medals_data.append(count_df.loc[(count_df['Year']==year)&(count_df['Medal']!=0)].shape[0]) # 折线图数据 line_data=[] for i in range(len(medals_data)): line_data.append(round(medals_data[i]/(medals_data[i]+others_data[i]),2)) x_data = [] for year in years: x_data.append(str(year)) bar = ( Bar(init_opts=opts.InitOpts(theme='light')) .add_xaxis(x_data) .add_yaxis("获奖",medals_data,stack=1,z_level=2) .add_yaxis("未获奖",others_data,stack=1) .extend_axis( yaxis=opts.AxisOpts( axislabel_opts=opts.LabelOpts(formatter="{value}"), max_=1 ) ) .set_series_opts(label_opts=opts.LabelOpts(font_size=12)) .set_global_opts( title_opts=opts.TitleOpts( title='历届冬奥会获奖|未获奖国家分布', title_textstyle_opts=opts.TextStyleOpts(font_size=20)), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(font_size=14), axisline_opts=opts.AxisLineOpts(is_sho=True,linestyle_opts=opts.LineStyleOpts(idth=2))), yaxis_opts=opts.AxisOpts( is_scale=True, name_textstyle_opts=opts.TextStyleOpts( font_size=16, font_eight='bold'), axislabel_opts=opts.LabelOpts( font_size=13), splitline_opts=opts.SplitLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(type_='dashed')), axisline_opts=opts.AxisLineOpts(is_sho=True, linestyle_opts=opts.LineStyleOpts(idth=2)) ), legend_opts=opts.LegendOpts(is_sho=True, pos_right='1%', pos_='2%'), datazoom_opts=opts.DataZoomOpts() ) ) line = Line().add_xaxis(x_data).add_yaxis("占比", line_data, yaxis_index=1,z_level=100) bar.overlap(line) bar.render("./Visual/[堆叠柱状折线图]历届冬奥会获奖-未获奖国家比例.html")
至此,利用Kaggle120年奥运会数据集的数据可视化就完成啦,欢迎交流!
空调维修
- 海信电视维修站 海信电视维修站点
- 格兰仕空调售后电话 格兰仕空调维修售后服务电
- 家电售后服务 家电售后服务流程
- 华扬太阳能维修 华扬太阳能维修收费标准表
- 三菱电机空调维修 三菱电机空调维修费用高吗
- 美的燃气灶维修 美的燃气灶维修收费标准明细
- 科龙空调售后服务 科龙空调售后服务网点
- 华帝热水器维修 华帝热水器维修常见故障
- 康泉热水器维修 康泉热水器维修故障
- 华凌冰箱维修电话 华凌冰箱维修点电话
- 海尔维修站 海尔维修站点地址在哪里
- 北京海信空调维修 北京海信空调售后服务
- 科龙空调维修 科龙空调维修故障
- 皇明太阳能售后 皇明太阳能售后维修点
- 海信冰箱售后服务 海信冰箱售后服务热线电话
- 海尔热水器服务热线